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Soils are Earth’s largest terrestrial carbon (C) pool, and their respon-
siveness to land use and management make them appealing targets
for strategies to enhance C sequestration. Numerous studies have
identified practices that increase soil C, but their inferences are
often based on limited data extrapolated over large areas. Here,
we combine 15,000 observations from two national-level databases
with remote sensing information to address the impacts of refores-
tation on the sequestration of C in topsoils (uppermost mineral soil
horizons). We quantify C stocks in cultivated, reforesting, and nat-
ural forest topsoils; rates of C accumulation in reforesting topsoils;
and their contribution to the US forest C sink. Our results indicate
that reforestation increases topsoil C storage, and that reforesting
lands, currently occupying >500,000 km2 in the United States, will
sequester a cumulative 1.3–2.1 Pg C within a century (13–21 Tg
C·y−1). Annually, these C gains constitute 10% of the US forest
sector C sink and offset 1% of all US greenhouse gas emissions.
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In the midst of growing urgency to enhance terrestrial C se-
questration, mitigate climate change, and sustain soil-based

ecosystem services, there is widespread agreement on the need to
understand how land use practices impact soil C. Indeed, for years,
scientists have estimated the C cycle impacts of land use and soil
management strategies, often calling for new or improved practices to
be implemented on increased land areas. These forward-looking
studies have defined targets (1, 2), developed networks and meth-
odologies (3, 4), and advanced soil and C cycle science along the way.
However, they have rarely used large observational datasets to directly
address how land use affects soil C (5). Far more often, these big-
picture studies employ expert judgment, literature review, or sophis-
ticated model-data fusion methods (6–9). Against this range of ap-
proaches, there is a recognized need for empirical analyses of large
datasets to develop observational constraints on modeled and/or ex-
trapolated results (10–13). Without a doubt, observational approaches
have their own limitations, and large databases incorporate natural
variation and associated uncertainty. Nonetheless, the magnitude of the
problem and the nature of science in the collaboration age—which
applies complementary methods to pressing questions—establish a
strong role for observations in addressing large-scale questions of soil C
sequestration. Here, we demonstrate an approach that synthesizes
multiple data types and sources to address a problem at the nexus of
soils, land use, and the C cycle.
Soils to 1 m depth hold 74% of all terrestrial C (14–16), with

North America and the conterminous US (CONUS) representing
35% and 4% of all soil C, respectively (17, 18). Because adding even
a few percent to this large C stock translates into a globally relevant
increase, it is essential to quantify the increases achievable through
changes in land use and management. Reforestation of marginal
croplands and active reforestation (replanting) on understocked
forestlands are two promising strategies for increasing terrestrial C
sequestration (19–21). Reviews of site-level studies (22, 23) suggest
reforestation and other land use and management changes increase

soil C by 0.1–0.4 Mg of C·ha−1·y−1, with potential increases of 50–
100 Tg·y−1 estimated for US and European agricultural lands (1, 24).
However, it may be more important to develop a framework for
constraining these estimates with observations than to precisely
quantify the soil C increases associated with specific land use or
management changes. To that end, we offer an approach for
synthesis—and a set of empirical data resources for collective
use—while also directly quantifying C sequestration in the
topsoils (uppermost mineral soil horizons) of lands that are
currently undergoing reforestation in the United States.

Data Synthesis
We used several large data sources as starting points in a series of
filtering, gap-filling, validation, and analysis steps, described in
Methods and detailed in Supporting Information. Because these in-
dependent data sources have different applications and align with
different questions, we must first summarize them briefly. The first
source was the International Soil Carbon Network (ISCN) Gen3
Database (25), containing data for >433,000 individual soil layers
worldwide. Individual layers make up soil profiles; profiles are one
to many per site, and sites are georeferenced. The ISCN Database
contains data contributed by individuals, networks, and government
agencies. Geospatial data are the second data type we used for this
analysis; we extracted point attributes from two geospatial datasets
to overlay these upon the geographical coordinates of ISCN sites.
These secondary geospatial (overlay) data include the following: (i)
land cover attributes from all four versions of the National Land
Cover Dataset (NLCD; refs. 26–29), a LANDSAT-derived, 30-m
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resolution data product; (ii) estimates of forest stand age from a North
American canopy age map (30), a 250-m product developed from
ground-based observations and remote sensing information.We refer to
ISCN sites with their remotely sensed overlay data as “ISCN-NLCD
sites,” which we use to compare cultivated, reforesting (previously cul-
tivated), and natural forest (i.e., never cultivated) lands. The third major
data source was the US Department of Agriculture (USDA)-Forest
Service (FS). Specifically, we acquired plot-level C data and forest
area estimates from the National Forest Inventory (NFI) program’s
Forest Inventory and Analysis (FIA) Database (31) and ecoregional
classifications from the FS Geodata Clearinghouse (32). We present
results from the NFI plot network, which only samples forestland, to
address reforestation (i.e., replanting) on continuously forested lands.

Land Use, Land Use Change, and Soil Properties at a National
Level
At present, there is a spatially nonrandom pattern of land use
change operating in CONUS, not detectable from land cover
alone, which is having a major impact on terrestrial C sequestra-
tion at a national level. While remotely sensed land cover products
such as the NLCD effectively recognize land uses with distinctive
land cover signals (e.g., cultivation), remote sensing products may
not reliably distinguish intergrading land cover types, such as forest
and shrub/scrub (26, 27, 33). Furthermore, these products cannot
identify lands that began transitioning to a different use before the
remote sensing era. However, soil observations can reveal historic
land use transitions, indicate its spatial patterns and drivers, and
assess its impacts on C sequestration (ref. 34 and Fig. 1).
Evidence of preferential land use and broad-scale land use

change in CONUS can be found in several observations of topsoil
properties in cultivated, reforesting, and natural forest ISCN-
NLCD sites. First, cultivated lands have higher topsoil clay con-
tents, lower sand, and stone contents than natural forest sites with
never-cultivated soils (Fig. 2). These differences indicate a wide-
spread tendency for preferential cultivation of finer-textured soils,
while forests are allowed to persist on stonier and coarser-textured
soils. In turn, lands that are presently reforesting have topsoil clay
and stone contents that are intermediate between cultivated soils
and never-cultivated natural forest soils, indicating nonrandom
abandonment of cultivation on these marginal soils. Within this
same wide-ranging dataset, significant differences in median soil C

stocks between the three land uses suggest that reforestation in-
creases soil C storage (Fig. 3). The detectability and magnitude of
these differences depends on the depth of reporting (see ISCN
Dataset Preparation for details and full discussion). For topsoils (the
top 10 cm of the uppermost mineral horizon), the sample size of
the nationwide dataset is sufficiently large to detect a 5% difference
in median C stocks between cultivated and reforesting topsoils
as statistically significant (20 vs. 21 Mg of C·ha−1, respectively).
Detecting a small difference in soil C stocks is difficult due to
spatial variability (35, 36), and in meta-analyses of management
impacts on soil C, we have found the uppermost portions of the soil
to be the most responsive (34, 37, 38). In this case, detecting such a
subtle change may only be possible because the depth we consider
is the most superficial portion of the topsoil, which is in direct
contact with physical disturbances and detritus inputs (e.g., crop
residues, forest litter). Within this same volume of soil, the median
C stock for natural forests (37 Mg of C·ha−1) is much higher than
for cultivated or reforesting soils. However, if C stocks are com-
puted to 30 cm depth (typical of international greenhouse gas
inventory and reporting programs), an apparent 2% relative dif-
ference between reforesting and cultivated soils (medians of 47 and
48 Mg of C·ha−1, respectively) is not statistically significant, while
both are significantly less than natural forest soils (60 Mg of C·ha−1).
In this case, the differences between natural forest soils and the
other two land uses are smaller, possibly indicating that past cul-
tivation mixed surface C downward (39, 40). If this is true, we
overestimate the potential for C gain by comparing natural forest
to cultivated (or reforesting) topsoils. Conversely, the preferential
cultivation of soils with higher clay, lower sand, and stone contents
(Fig. 2) could mean that soils used for cultivation have inherently
higher productivity or greater capacity for C storage below 10 cm
(e.g., through illuviation with clay minerals), and that these fun-
damental differences in soil properties are responsible for patterns
of C storage in deeper horizons. Ultimately, because our analysis
is not intended to provide C estimates for international reporting
so much as a quantitative assessment of reforestation impacts on
soil C in a highly responsive surface layer, we maintain the focus
on topsoils for the rest of this paper.

Land Use Has a Strong, Direct Impact on Topsoil C Stocks
with a Consistent Pattern Across Geographic Areas
Placing ISCN-NLCD sites into an ecoregional framework reveals
that in 9 of 10 ecoregional divisions, natural forests have signifi-
cantly higher mean topsoil C stocks than cultivated topsoils (Fig. 4).
The sole exception is the tropical/subtropical desert division, where
data are too limited to detect significant differences among any land
uses. In 5 of 10 divisions, reforesting lands have significantly greater
mean topsoil C storage than cultivated lands, and in no division are
there significant land use differences that deviate from the overall
national trend. Similarly, in most divisions, mean topsoil C stocks in
reforesting soils are much closer to cultivated than natural forest
levels, suggesting considerable remaining C sequestration potential.
Because land use interacts with significant regional variation in
topsoil C storage (P < 0.001 for main effects and interactions), and
spatial variation in soil C stocks is important in its own right (36,
41), regionalized estimates of topsoil C storage for different land
uses may allow more nuanced projections and predictions of land
use impacts on soil C sequestration at a national scale.

Reforestation and C Sequestration at the CONUS Level
At the national level, our ISCN-NLCD and NFI synthesis datasets
provide quantitative estimates for topsoil C sequestration on two
types of reforesting land, collectively occurring on >500,000 km2

(Table 1; see Scaling: Projection and Prediction of Topsoil C Stocks
for detailed methods). Because these datasets constrain the
independent contributions of cultivated land reforestation (ISCN-
NLCD) and forestland reforestation (NFI), the C gains associated
with these land use and management decisions are additive. Over
the course of a century, topsoils on reforesting cultivated lands
will accumulate 0.8–1.6 Pg C, depending on which forest area
estimate is applied to the ISCN-NLCD dataset, while reforestation
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Fig. 1. Cultivation is a land use with strong impacts on land cover and soil
morphology that are readily recognized in remote sensing products (NLCD)
and soil observation datasets (ISCN). By recognizing the distinctive Ap ho-
rizon (plow layer) as a legacy of past cultivation, lands currently possessing
forest cover can be separated into two groups: natural forest on never-cul-
tivated soil and forests that are in the process of establishing on previously
cultivated soil. Collectively, these three groups represent a forest-to-culti-
vation-to forest transition that is playing out over hundreds of thousands of
square kilometers in the United States.
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on continuous forestland will contribute an additional 0.5 Pg C.
Collectively, this total C gain (1.3–2.1 Pg C) is on lands that are al-
ready reforesting, i.e., it is not a theoretical projection based on in-
creased replanting efforts or large-scale crop-to-forest land use
changes, as is often suggested in arguments for enhancing soil C
sequestration. However, realizing these topsoil C gains over the
course of a century requires previously cultivated lands now un-
dergoing reforestation to remain in forest land use, as recultivation
could cause larger soil C losses than the C gains achievable by
substituting reforestation on a similar area of cultivated land. How-
ever, in light of relatively low areal percentages for both types of
reforestation, modest increases in area would have a multiplicative
impact on nationwide C sequestration. For example, replanting could
be implemented on more than 7% of current forestland (Table 1), or
additional marginal lands could be transferred from cultivation to
forest, increasing the contribution of reforesting cultivated lands to
the national forest land base. In either case, a small increase in re-
forestation area as a percentage of the total forest land area, over a
long time period, would create significant C cycle impacts that are
readily quantifiable using the empirical models we present here.
Our estimates of the realized and potential topsoil C gains on

cultivated lands that are undergoing reforestation help to constrain
C sequestration under this type of land use change at multiple levels.
Most importantly, at the CONUS level, the C gains that have been
realized thus far for this type of reforestation are only about 10% of
their potential, highlighting the substantial C sink capacity of this
land use transition if these lands are allowed to continue returning

toward a natural forest condition. However, because our results are
not based upon a longitudinally sampled set of sites undergoing land
use change, but rather on a space-for-time substitution, it is im-
portant to recognize that individual sites may show no change in
topsoil C, or changes over time that differ from the estimates we
calculate based on statistical differences (i.e., between medians or
means). In this regard, our broader inferences are based on statis-
tical differences and are only as robust as the assumptions that
underlie them. Regardless of whether all prerequisites of space-for-
time substitution are met, the metrics that we have termed realized
and potential topsoil C gains (Table 1) can be used to prioritizing
ecoregions for C management, because they indicate significant
statistical differences in soil C between land uses. For example, some
ecoregions have less potential overall (dry domain orMediterranean
division), while some have much remaining potential (humid tem-
perate domain or hot continental division). Our empirical models
can be used similarly; ecoregions with particularly low (subtropical)
or high (warm continental) topsoil C stocks are indicated by cor-
responding differences in their y intercepts, while differing C accu-
mulation rates are suggested by differences in model slopes. Overall,
our modeled rates of topsoil C accumulation range from 0.11 to 0.34
Mg of C·ha−1·y−1, confirming the rates reported in expert reviews
and cross-site studies while providing a more detailed view that can
help move C management in an increasingly regionalized direction.
To estimate how long C accumulation will continue during

reforestation on cultivated lands, we need some way to constrain
the age of the forests that are currently growing at ISCN-NLCD
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Fig. 2. Cultivated soils are clay-rich, forests persist on sandy and stony soils, and reforestation tends to happen on marginal soils of intermediate textures.
Graphs show the percentage clay, sand, and stone contents of topsoil horizons from cultivated, reforesting, and natural forest ISCN-NLCD sites (n = 12,617).
Boxes are medians and 25th and 75th percentiles; whiskers are 10th and 90th percentiles; dots are fifth and 95th percentiles. Medians are significantly
different (P < 0.05) for all three land use groups except in the case of sand content (no significant difference between cultivated and reforesting).
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greatest in natural forest, and intermediate on
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sites (n = 12,617). See Fig. 2 for box, whisker, and dot
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significant differences (P < 0.05) in median C stocks
between land uses. The dotted lines in each figure
are intended to aid in visual reference and show
thresholds that are 5%, 50%, or 100% greater than
cultivated baseline levels.
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sites. Unfortunately, while the forest canopy age dataset proved
sufficient for broadly attributing ages and estimating rates of
topsoil C accumulation across ISCN-NLCD sites, it may not be
applicable at finer scales or to more specific questions due to its
coarse resolution (250 m) and intended application to forestland
with homogenous physical and age structure. In lieu of relying
exclusively on that data product for questions it cannot confidently
address, literature reviews are useful for approximating relation-
ships between age and soil C during forest recovery. One global
analysis that highlighted the potential of cultivation-to-forest land
use change suggested a 6% increase in soil C (relative to cultiva-
tion) during the 10- to 30-y period, with 19% increases over
longer-term (>30 y) reforestation (42). In an analysis focused on
the United States, we developed look-up tables for several

previous land uses (34). On soils previously used for agriculture,
the first detectable change in soil C storage (+5%) occurred
during the period 35–45 y since forest establishment, with gains
reaching 18% during the 115- to 125-y period. In the context of
this relevant literature, the 5% difference in median C storage that
we find between cultivated and reforesting topsoils suggests that,
on average, previously cultivated reforesting lands in CONUS
have been growing forests for roughly 20–40 y, meaning that
many more decades are required to realize their full potential for
topsoil C sequestration.

Key Uncertainties: Deep Soil C Dynamics During Forest
Development
Here, we must highlight two sources of uncertainty due to their
potential effects on inferences drawn from our empirical models of
forest age and topsoil C storage. First, if deep soils (below 30 cm)
can undergo significant C stock changes over decadal time periods,
then the topsoil C gains we report here may not be representative of
the whole profile. Some literature reports subsoil C losses during
postagricultural reforestation (43–45), and if these are generalizable
across the soils in our nationwide dataset, the topsoil C gains that we
report may be offset by deep soil C losses. Second, our reliance on
stand age as a predictor variable in empirical models of topsoil C
storage introduces some uncertainty into our predictions. Not
only is the very concept of “stand age” questionable, particularly in
older uneven-aged forests, but methods of measuring stand age (or
extracting it from maps) may introduce uncertainty into our pre-
dictions. While we suggest that there is no likely directional bias in
our empirical predictions, it is important to acknowledge that mixed-
age forests are extensive in the United States and attributing ages for
them can be challenging (46). Ultimately, future analyses or similar
uses of empirical data may be able to refine our predictions for
topsoils, or supplement them for subsoils, but for the sake of this
work, we refer the reader to ISCN Dataset Preparation and Empirical
Models: Supporting Results and Critical Appraisal of Stand Age Data
for fuller consideration of these caveats.

Reforesting Topsoils Play a Major Role in the US Forest C Sink
The forest sector is a critical component of the US greenhouse gas
budget, offsetting ∼11% of all US greenhouse gas emissions with a
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Annotations at left indicate significance of multiple comparisons (P < 0.05)
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Table 1. Reforestation areas and impacts on C sequestration are unevenly distributed across the CONUS

Scenario/Domain/Division Forest, km2 Reforest, km2 % Model 100 y C, Pg Realized C, Tg Potential C, Tg

CONUS (ISCN)* 3,715,005 631,551 17 C = 26 + 0.249 × age 1.6 104 1,015
CONUS (ISCN)† 1,970,143 334,924 17 C = 26 + 0.249 × age 0.8 55 538
CONUS (NFI) 2,773,628 197,754 7 C = 19 + 0.233 × age 0.5
Dry 457,312 32,012 7 C = 25 + 0.237 × age 0.1 12 47
Humid Temperate 2,316,316 463,263 20 C = 27 + 0.215 × age 1.0 774
Total across domains 2,773,628 495,275 1.1 12 821

Hot Continental 437,829 137,811 22 C = 28 + 0.155 × age 0.2 28 331
Marine 137,680 3,129 2 NS 16
Mediterranean 146,957 1,062 1 NS 3 5
Prairie 111,512 59,241 34 C = 25 + 0.110 × age 0.1 41
Subtropical 677,857 406,312 36 C = 19 + 0.289 × age 0.8 366
Temperate Desert 127,858 9,465 5 C = 39 + 0.118 × age 0.0 9
Temperate Steppe 395,083 102,721 16 NS 92 216
Trop./Subtr. Desert 65,918 1,156 2 NS
Trop./Subtr. Steppe 274,420 37,183 10 NS 26 82
Warm Continental 398,515 74,722 15 C = 37 + 0.339 × age 0.3 67 374
Total across divisions 2,773,628 832,803 1.4 217 1,438

Table shows forestland area (km2), reforestation area (as km2 and as a percentage of total forestland), and C gains during reforestation for CONUS overall,
and subdivided by ecoregions (domains and divisions). At CONUS level, empirical models and 100 y C gains are presented for reforestation occurring on two
types of land: cultivation-to-forest (using the ISCN-NLCD dataset) and forestland reforestation (replanting, using NFI data). For reforestation on previously
cultivated lands (ISCN-NLCD sites), realized topsoil C gains (Tg relative to cultivated baseline) are presented for spatial units where site-level mean C storage
(Mg·ha−1) is significantly greater for reforested than cultivated sites; potential topsoil C gains are presented for units where C storage is significantly greater
for natural forest than cultivated C sites (see Fig. 3 for land use differences in C storage by ecoregion).
*Areas include lands classified by NLCD as shrub/scrub.
†Areas exclude lands classified by NLCD as shrub/scrub.
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mean net removal of 651-Tg CO2 equivalents (176 Tg of C) annually
during the past 5 y (47). Based on estimates from our empirical
models, annual topsoil C gains on reforesting lands (1.3–2.1 Pg of C
over 100 y = 13–21 Tg of C·y−1) represent 7–12% of the entire forest
sector greenhouse sink, effectively offsetting 0.8–1.3% of all US
greenhouse gas emissions. Given that our results suggest this C sink
will persist for decades, C sequestration in reforesting topsoils can be
a significant long-range solution to the problem of the declining sink
strength of the US forest sector. For over 20 y, strategic planning
analyses and reports have warned that the C sink strength of US
forests is declining, and is expected to become neutral beyond the
mid-21st century (48–51). An additional 100–200 Tg of C·y−1 has
been identified as an achievable target that would stabilize the long-
range trajectory of the forest C sink (52). In light of these far-
reaching assessments, our analysis is significant for two reasons.
First, there are no published empirical estimates for the role of
reforesting topsoils in US forest C sequestration; researchers over-
whelmingly focus on more readily quantified (but admittedly com-
plex) aboveground components. Second, even at their current
extent, topsoils that are now undergoing reforestation represent
a >10% contribution toward the additional C sequestration needed
to stabilize the C sink trajectory beyond the mid-21st century. Given
that the majority of their potential C gains are yet to be realized, and
even slight increases in reforestation area will have a multiplicative
impact on long-term CONUS-level C sequestration, topsoils in
reforesting lands are indeed a natural climate solution (1).

Conclusion
Through a synthesis that integrates 15,000 soil observations
with remote sensing and geospatial information, we estimate
topsoil C gains on lands undergoing two types of reforestation
in CONUS. By quantifying the impact of replanting on topsoil
C accumulation in continuous forestland, revealing differences
in the underlying soil properties of cultivated, reforesting, and
natural forest lands nationwide, and placing our results in an
ecoregional framework, we reveal the physical basis for patterns
of land use change on marginal soils, and provide regionalized
insight into rates of topsoil C accumulation and long-term C
sequestration potentials. Even if continued topsoil C accumu-
lation rates are slower than we estimate, or whole-profile C
stocks follow a different trajectory, we demonstrate the use of
complementary empirical data sources suggesting that topsoil C
stocks have already increased in CONUS due to ongoing re-
forestation. Currently, reforesting topsoils are accumulating
13–21 Tg of C·y−1, with the potential to accumulate hundreds
more Tg of C within a century. Collectively, the cumulative
potential for topsoil C sequestration on these lands may exceed
2 Pg of C—double the global land use change emission (53)—
highlighting the significance of continued forest recovery on
these lands, as well as the magnitude of additional C accumu-
lation that could be achieved with modest area increases
in reforestation.

Methods
ISCN Dataset. We used the ISCN map-based data tool to download a data-
set of 319,316 soil layers from 52,178 profiles in CONUS. The dataset
included geographic coordinates, descriptive, physical, chemical, and met-
adata for all sites, profiles, and layers contained in the download, which
contained data from multiple sources (25, 54–58). Next, we proceeded
through a series of filtering, gap-filling, and validation steps, described in
greater detail in ISCN Dataset Preparation. The present analysis focuses on
results for 12,617 topsoil layers (A horizons) across the CONUS, representing
those layers that met all criteria and were appropriate to address the
questions of interest.

Overlay Data: Land Cover and Canopy Age. We extracted land cover and
canopy age for each ISCN site, assigning each location to its closest (in time)
NLCD product. We assumed that land cover attributes for soils sampled
between January 1, 1989, and December 31, 1996, were reasonably repre-
sented by the NLCD1992 product; soils from 1997 to 2001 were represented
by NLCD2001; soils from 2002 to 2006 by NLCD2006; soils from 2007 to most
recent (2014) by NLCD2011. After matching each ISCN site to the appropriate

NLCD classification, we performed a series of land cover aggregation and
validation steps described in ISCN Overlay Data: Aggregating and Validating
Land Cover Classifications.

For our second overlay dataset, we extracted canopy ages (year 2006) from
a 250-m resolution North American forest canopy age map produced by
combining plot-level and multiple remote sensing data sources. We per-
formed this extraction only for a subset of the ISCN-NLCD sites; specifically,
those matched to NLCD2001 and NLCD2006, to obtain forest canopy ages
only for ISCN-NLCD sites that were closely temporally aligned with the input
data and estimated canopy age attributes of the data product. To overlay an
age value on each site, we extracted the age for the pixel containing the ISCN-
NLCD geographic coordinates using ArcGIS (ESRI), which was also our ap-
proach for obtaining other overlay data.

FS Data: Plots, Land Areas, and Ecoregions. Data contained in the FIA Database
are taken as part of the NFI, an equal-probability sample of forestland across
CONUS. There is one NFI plot on approximately every 2,400 ha across the
United States, placed randomly within a hexagonal grid. We queried the FIA
Database for plots with topsoil C measurements (Mg of C·ha−1 to 10 cm), and
filtered query returns to use topsoil C stocks only for single-condition plots,
i.e., those not subdivided into different forest conditions (e.g., stand ages).
We made this exclusion to ensure straightforward data interpretation and
avoid potential edge effects. As additional constraints, we utilized only the
most recent observation of each plot (NFI plots are periodically remeasured),
and only plots observed since 2000, to ensure NFI data were concurrent with
the observations from the ISCN-NLCD dataset. Altogether, our NFI soil C
dataset held 2,383 observations. To test relationships between soil and bio-
mass C, we also assembled a dataset of plot-level aboveground biomass C
stocks for the same plots that provided soils information. We obtained for-
estland areas for ecoregions of CONUS (described in Ecoregional Framework)
using standard FIA estimation procedures (59).

Data Analysis. We used nonparametric and parametric tests, in a phased
approach, to address our questions of interest. We used nonparametric
analyses in the first phase with the goal of showing data distributions, de-
scribing patterns, and testing for significant differences inwhat is essentially a
national soil census. Nonparametric tests are suited for this portion of our
analysis because skewed distributions that challenge parametric criteria are
common in large datasets, and reflect the reality of the populations of in-
terest (e.g., a small number of topsoils have very large C stocks). We used
nonparametric tests rather than eliminate outliers from our populations of
interest, retain them and incur skewness, or attempt to normalize the dis-
tributions with transformations.

In our nonparametric analyses, we used Kruskal–Wallis tests with Dunn’s
multiple comparisons to indicate whether topsoil textures, thicknesses, and
C stocks differed significantly between land uses. Observations included in
these tests were ISCN-NLCD sites with cultivated, reforesting, or natural
forest land uses; we assigned sites into these land use groups using a com-
bination of remote sensing (NLCD) and soil profile information (ISCN). We
review our approach for assigning land use (Fig. 1) here because it contex-
tualizes our results. Because cultivation is reliably indicated by a distinctive
land cover, ISCN-NLCD sites with cultivated land cover represent cultivation
as a land use. However, ISCN-NLCD sites attributed as forest are separable
into two land uses: natural forests (soils never cultivated) and forests that
have become established on previously cultivated lands, with an Ap horizon
serving as the distinguishing feature. An Ap horizon (i.e., plow layer) is
readily recognized in a soil pit by its consistent (often deep) thickness and
clear abrupt boundary over underlying horizons, and may persist for cen-
turies following agricultural abandonment (60, 61). In contrast, A horizons in
forest soils are usually thinner and have wavy, irregular, or otherwise vari-
able thicknesses and boundaries.

For the second phase of our data analysis, we used parametric statistics to
estimate mean values, SEs, and significant differences for topsoils from
various land use by ecoregion groups. In these tests, we did not include
topsoils with C stocks separated from the grand mean by >2σ (3% of the
12,617 total observations). Also, we diagnosed transformations of the right-
skewed distribution of topsoil C stocks, selecting the square-root trans-
formation which provided the greatest mitigation of nonnormality.
Subsequently, we ran ANOVA with Fisher’s Least Significant Difference multiple
comparisons to indicate whether land uses had significantly different topsoil C
stocks across the entire CONUS, as well as within individual ecoregions. We back-
transformed the means of ecoregion by land use for scaling exercises described
in Scaling: Projection and Prediction of Topsoil C Stocks.
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In all statistical tests comprising our data analysis, conducted using Sig-
maPlot (SYSTAT), we set P < 0.05 as the threshold for accepting test results
as significant.
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